References

Andreetti, G. D., Domiano, P., Fava Gasparri, G. \& Nardelli, M. (1969). To be published.
Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.
Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. \& Zambonelli, L. (1965). Acta Cryst. 19, 619.
Bonamico, M., Dessy, G., Mugnoli, A., Vaciago, A. \& Zambonelli, L. (1965). Acta Cryst. 19, 886.
Bonamico, M., Mazzone, G., Vaciago, A. \& Zambonelli, L. (1965). Acta Cryst. 19, 898.

Bracher, B. H. \& Small, R. W. H. (1967). Acta Cryst. 23, 410.

Braibanti, A., Manotti Lanfredi, A. M. \& Tiripicchio, A. (1967). Z. Kristallogr. 124, 335.

Braibanti, A., Manotti Lanfredi, A. M., Tiripicchio, A. \& Bigoli, F. (1969). Acta Cryst. B25, 100.
Braibanti, A., Tiripicchio, A., Manotti Lanfredi, A. M. \& Bigoli, F. (1968). Z. Kristallogr. 126, 307.
Braibanti, A., Tiripicchio, A., Manotti Lanfredi, A. M. \& Camellini, M. (1967). Acta Cryst. 23, 248.
Braibanti, A., Tiripicchio, A. \& Tiripicchio Camellini, M. (1969). Acta Cryst. B25, 2286.

Chang, S. C., Park, D. Y. \& Li, N. C. (1968). Inorg. Chem. 7, 2144.
Chidambaram, R., Sequeira, A. \& Sikka, J. K. (1964). J. Chem. Phys. 41, 3616.
Collin, R. L. \& Lipscomb, W. N. (1951). Acta Cryst. 4, 10.
Cramér (1954). The Elements of Probability Theory. Stockholm: Almqvist \& Wiskell.
Fava Gasparri, G., Nardelli, M. \& Villa, A. (1967). Acta Cryst. 23, 384.

Ferrari, A., Braibanti, A. \& Bigliardi, G. (1963). Acta Cryst. 16, 498.
Ferrari, A., Braibanti, A., Bigliardi, G. \& Dallavalle, F. (1963). Z. Kristallogr. 119, 284.

Ferrari, A., Braibanti, A., Bigliardi, G. \& Lanfredi, A. M. (1965a). Acta Cryst. 18, 367.

Ferrari, A., Braibanti, A., Bigliardi, G. \& Lanfredi, A. M. (1965b). Acta Cryst. 19, 548.

Ferrari, A., Braibanti, A., Bigliardi, G. \& Lanfredi, A. M. (1965c). Z. Kristallogr. 122, 259.

Freeman, H. C. \& Guss, J. M. (1968). Acta Cryst. B24, 1133.

Gramaccioli, C. M. (1966). Acta Cryst. 21, 600.
Gramaccioli, C. M. \& Marsh, R. E. (1966). Acta Cryst. 21, 594.
Haas, D. J., Harris, D. R. \& Mills, H. H. (1965). Acta Cryst. 19, 676.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids. New York: Benjamin.
Hughes, D. O. \& Small, R. W. H. (1962). Acta Cryst. 15, 933.

Jose, P., Pant, L. M. \& Biswas, A. B. (1964). Acta Cryst. 17, 24.
Liminga, R. \& Olovsson, I. (1964). Acta Cryst. 17, 1523. McWeeny, R. (1951). Acta Cryst. 4, 513.
Nardelli, M. \& Fava, G. (1960). Ric. Sci. 30, 898.
Nardelli, M., Fava Gasparri, G., Boldrini, P. \& Giraldi Battistini, G. (1965). Acta Cryst. 19, 491.
Palenik, G. J. (1964a). Acta Cryst. 17, 687.
Palenik, G. J. (1964b). Acta Cryst. 17, 696.
Peyronel, G. \& Pignedoli, A. (1967). Acta Cryst. 23, 398.

Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

The Crystal Structure of TiFeSi and Related Compounds

By Wolfgang Jeitschko*
Department of Metallurgy, University of Illinois, Urbana, Illinois 61801, U.S.A.

(Received 3 April 1969)
TiFeSi crystallizes with an orthorhombic unit cell of space group Ima2 ($C_{2 v}^{22}$) with lattice constants $a=6.997 \pm 0.002, b=10.830 \pm 0.005, c=6.287 \pm 0.002 \AA$. The structure is of a new type, which is a superstructure of the ordered $\mathrm{Fe}_{2} \mathrm{P}$-type, with 12 formula units in the orthorhombic unit-cell. TiFeSi has a strong tendency to form pseudohexagonal multiple twins with the common a axis as twin axis. The structure has been refined by the least-squares method from single-crystal X-ray data, giving a final R value of 0.094 for the 344 observed reflections. TiFeGe crystallizes with the same structure: $a=7.155 \pm 0.002, b=11.025 \pm 0.007, c=6.405 \pm 0.003 \AA$, while TiCoGe is of the ordered $\mathrm{Fe}_{2} \mathrm{P}$-type: $a=6.222 \pm 0.002, c=3.7267 \pm 0.0010 \AA$. The coordination polyhedra in the structures TiFeSi and TiCoGe are very similar to those occurring in TiNiSi (E phase) and $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$. The interatomic distances in these structures are discussed.

Introduction

Recent investigations on ternary systems with two transition metals and silicon or germanium showed the

[^0]existence of a large number of isotypic phases at the composition 1:1:1 which are called E phases (for a summary of references see Jeitschko, 1968; Jeitschko, Jordan \& Beck, 1969), the structure of which was determined for the prototype TiNiSi to be of the ordered PbCl_{2}-type (Shoemaker \& Shoemaker, 1965). In one of these studies (Spiegel, Bardos \& Beck, 1963) a
phase of composition TiFeSi was observed (Spiegel, 1963) which was not isotypic with TiNiSi. This phase was also found independently by Freundlich \& Mochai (1966) and Markiv, Gladyševeskij, Skolozdra \& Kripjakevič (1967). The latter authors also gave unit-cell data ($6 / \mathrm{mmm}, a=6 \cdot 24, c=6.96 \AA$) which are closely related to the unit cell found in the present investigation; they also reported an experimental density of $5.57 \mathrm{~g} . \mathrm{cm}^{-3}$ for TiFeSi.

The crystal structure of TiFeSi seemed of interest in order to make a comparison with the E phase structure TiNiSi, especially since the ratios of the atomic sizes in TiFeSi are well within the limits found for the occurrence of E phases and therefore cannot be responsible for the change in structure.

Experimental

Samples of TiFeSi were prepared by arc melting the components (all of purity higher than 99.9%) under argon $(99.996 \% \mathrm{Ar})$ atmosphere. One sample was annealed in an evacuated fused-silica tube at $1000^{\circ} \mathrm{C}$ for five days. Metallographic examination showed that the sample was about 99% single phase. Powder patterns taken with $\mathrm{Cu} K \alpha$ radiation in a Guinier-de Wolff camera (using one film as filter to absorb fluorescent radiation) gave the same pattern for both the annealed and the unannealed specimen. 'Single crystals' isolated from the crushed samples (annealed and unannealed) showed a strong tendency to twinning, which was not recognized immediately. Single-crystal photographs of such a specimen were taken with a Weissenberg ($\mathrm{Cr} K \alpha$ and Mo $K \alpha$ radiation) and a Buerger precession camera (Mo $K \alpha$ radiation) and could be indexed with a hexagonal unit cell of $a=6 \cdot 29$ and $c=3.50 \AA$.

A preliminary intensity calculation gave very good agreement for a structure proposal assuming an ordered $\mathrm{Fe}_{2} \mathrm{P}$-type (Rundqvist \& Jellinek, 1959). However, the presence of a number of weak reflections required a doubling of the c axis in agreement with the unit cell found by Markiv et al. (1967).

The reciprocal lattice plane ($h k 1$) of this larger hexagonal pseudocell, which contains only the weak superstructure reflections (Fig. 1) suggested additionally a doubling of the a axis. A reciprocal lattice based on this unit cell, however, contains a high number of regular extinctions which could not be accounted for by space group extinctions. Therefore, the possibility of twinning (Buerger, 1960) was investigated.

The metallographic examination of a polished and etched ($3 \% \mathrm{HF}, 3 \% \mathrm{HNO}_{3}, 94 \% \mathrm{H}_{2} \mathrm{O}$) specimen using polarized light clearly showed twin boundaries which were not visible under unpolarized light, in addition to normal grain boundaries. The twin boundaries were present both in the annealed and unannealed conditions. Furthermore, the inspection of the pseudohexagonal reciprocal lattice plane ($h k 1$) mentioned above (Fig. 1), contained some higher angle reflections
which were out of register by up to 0.5 mm . Thus, twinning was clearly established.

The metallographic examination with polarized light revealed that single crystals of dimensions as large as 0.3 mm in diameter were present in the specimens. However, a search for a non-twinned crystal in the crushed samples was not successful.* The closest approximation to a single crystal was a plate-shaped specimen with dimensions $0.20 \times 0.15 \times 0.04 \mathrm{~mm}$. It contained about 88% of one orientation, while the other two orientations of this multiple twin (trilling) comprised 5 and 7%. These percentages were estimated from the intensity-distribution in the pseudo-hexagonal reciprocal lattice plane ($h k 1$) (Fig. 1). The Buerger precession photographs of this specimen showed orthorhombic symmetry for the superstructure reflections, whereas the reflections for the $\mathrm{Fe}_{2} \mathrm{P}$-like subcell still had the pseudohexagonal symmetry. With the lattice constants obtained from these photographs the Guinier-de Wolff powder pattern was indexed and a least-squares fit of the resolved lines (Table 1) gave the following lattice constants using silicon (99.98 Si , $a=5.4311 \pm 0.0004$ with $\lambda \mathrm{Cu} K \alpha_{1}=1.54051 \AA$) as standard:

$$
\begin{array}{ll}
a=6 \cdot 997 \pm 0.002 \AA & c=6 \cdot 287 \pm 0.002 \AA \\
b=10 \cdot 830 \pm 0.005 & V=476 \cdot 4 \pm 0.5 \AA^{3} .
\end{array}
$$

In this setting the orthorhombic a axis corresponds to the twin axis which is also the pseudohexagonal axis of the $\mathrm{Fe}_{2} \mathrm{P}$-like subcell.

For the refinement of the structure intensities were estimated visually with the aid of an intensity strip, which was scaled logarithmically in steps of 10%. The reciprocal lattice planes $(0 k l)$ to ($3 k l$) and ($h, 2 l, l$) were recorded from the 88% single crystal mentioned above with a Buerger precession camera (Mo $K \alpha$ radiation). All symmetry related intensities were measured and averaged after division by the Lorentzpolarization factor. No absorption correction was made. The presence of about 12% of the other two orientations in the specimen did not affect the accuracy

[^1]

Fig. 1 Three interpenetrating orthorhombic reciprocal lattice planes (1 kl) of a trilling of TiFeSi, suggesting hexagonal symmetry.

Table 1. Evaluation of Guinier-de Wolff powder patterns of TiFeSi and TiFeGe
$\mathrm{Cu} K \alpha$ radiation

of the intensity measurements of the super-reflections, which are not superimposed in reciprocal space because of the body centered extinctions (Fig. 1). The reciprocal lattice points of the $\mathrm{Fe}_{2} \mathrm{P}$-like subcells of the three orientations of the trilling coincide. However, the orthorhombic distortion of the structure has little influence on the intensities of the subcell and thus the small errors arising through the coincidence of the three pseudohexagonal lattices of the subcell do not affect the structure refinement significantly. Additional data were obtained from an irregularly shaped specimen ($\sim 0.15 \times 0.10 \times 0.10 \mathrm{~mm}$), which contained nearly equal amounts of each orientation. This specimen was rotated around the pseudohexagonal [100] axis in a Weissenberg camera (multiple-film technique, Mo $K \alpha$ radiation). Three reciprocal lattice layers were evaluated. Only the non-coinciding superstructure reflections and the $h 00$ reflections were included in the leastsquares refinement, although the intensities of the subcell (divided by 3, to account for the twinning) were utilized to obtain additional scale factors.

Structure determination and refinement

The conditions for possible reflections ($h k l$ only with $h+k+l=2 n, h 0 l$ only with $h=2 n$ and $l=2 n$) lead to the two space groups Ima2-C $C_{2 v}^{22}$ and Imam- $D_{2 h}^{28}$. It was previously mentioned that the intensity calculation for the $\mathrm{Fe}_{2} \mathrm{P}$-type subcell ($P \overline{6} 2 m$) gave very good agreement with the observed intensities. Therefore, it was concluded that the atomic positions in the four times larger orthorhombic cell would be essentially retained. This corresponds to 12 formula units of TiFeSi in the orthorhombic unit cell with a calculated density of $\varrho=5 \cdot 51 \mathrm{~g} . \mathrm{cm}^{-3}$ as compared with the experimental density of $\varrho=5.57 \mathrm{~g} . \mathrm{cm}^{-3}$, given by Markiv et al. (1967). Since the sixfold inversion axis in the $\mathrm{Fe}_{2} \mathrm{P}$-type structure is incompatible with the twofold rotation axis required by Imam, this space group could be ruled out. During a least-squares refinement of the $\mathrm{Fe}_{2} \mathrm{P}$-like subcell it was found that the silicon atoms in TiFeSi correspond to the phosphorus atoms and the titanium atoms take the places of the iron atoms in position $3(g)$, of the $\mathrm{Fe}_{2} \mathrm{P}$-type structure (Rundqvist \& Jellinek, 1959). There are two possibilities for the description of the $\mathrm{Fe}_{2} \mathrm{P}$-type subcell of TiFeSi in space group Ima2: one with Ti atoms at $x \simeq 0$ and $\frac{1}{2}$, the other with Ti at $x \simeq \frac{1}{4}$ and $\frac{3}{4}$. Only the latter could be refined by the least-squares method. A full-matrix program by Busing, Martin \& Levy (1962) was used, giving unity weights to all observed structure factors. The values of the atomic scattering factors were taken from International Tables for X-ray Crystallography (1962) and were corrected for the real part of the anomalous dispersion (Dauben \& Templeton, 1955).

During the first series of least-squares cycles the positional parameters of the atoms, their isotropic temperature parameters and one scale factor were refined. It should be emphasized that a refinement of the scale
factors for individual reciprocal lattice layers was not feasible in this case, since the data for the superstructure and substructure were recorded on different films in the precession camera and the degree found for the orthorhombic distortion of the hexagonal subcell depends to a large extent on the ratio of scale factors for the sub- and superstructure. The incorporation of the Weissenberg data, recorded from the practically ideal trilling mentioned above, however, allowed double checks on the scale factors. All scale factors agreed within 10%.
The refinement of the isotropic thermal parameters gave values for the transition metal atoms varying between $B=0.32 \pm 0.10 \AA$ for $\mathrm{Ti}(3)$ and $B=0.62 \pm$ $0.06 \AA^{2}$ for $\mathrm{Fe}(1)$. The corresponding values for the lighter silicon atoms were $B=0.74 \pm 0 \cdot 14 \AA$ for $\mathrm{Si}(1)$ and $B=0.98 \pm 0.20 \AA^{2}$ for $\operatorname{Si}(2)$. These variations were thought to be of no physical significance and it was preferred to fix these parameters with the weighted averages of 0.5 for the transition metal atoms and 0.8 for the silicon atoms in the subsequent refinement cycles. As a test for possible disorder in the structure, occupancy factors were refined together with the positional parameters. The resulting values for occupancy factors varied between 0.98 ± 0.03 for $\operatorname{Si}(1)$ and $1.03 \pm$ 0.03 for $\mathrm{Ti}(3)$ with the exception of 0.93 ± 0.05 for $\mathrm{Si}(2)$ and 1.07 ± 0.03 for $\mathrm{Fe}(2)$. Therefore, substantial disorder can definitely be ruled out. There is a slight indication that either $\mathrm{Si}(2)$ has a somewhat larger thermal parameter or that this position has a small deviation from full occupancy.

In the final least-squares cycles only the positional parameters and the overall scale factor were varied, resulting in the positional parameters listed in Table 2. The final R value ($R=\sum\left|F_{o}-F_{c}\right| / \sum F_{o}$) is 0.094 for the 344 observed structure factors (Table 3). Since this residual value depends mostly on the agreement of the strong subcell reflections, it cannot be taken as a measure for the accuracy of the orthorhombic distorted structure. However, the R value for the 210 observed superstructure reflections is similar: $R=0.096$.

The structures of TiFeGe and TiCoGe

Alloy specimens of these two compounds were prepared in the same way as described for TiFeSi. The Guinier-de Wolff pattern taken with the double-film technique (to absorb fluorescent radiation) and $\mathrm{Cu} K \alpha$
radiation showed no impurity lines for the two samples. The annealing treatment (7 days, $840^{\circ} \mathrm{C}$ in silica tubes) only resulted in a sharpening of the powder lines. The pattern of TiFeGe was very similar to that of TiFeSi, clearly showing the weak superstructure lines of the TiFeSi structure and could be indexed with a similar orthorhombic unit-cell. Least-squares refinement of the lattice constants (as described above) gave $a=7.155 \pm$ $0.002, b=11.025 \pm 0.007, c=6.405 \pm 0.003 \AA$ and $V=$ $505 \cdot 3 \pm 0.7 \AA^{3}$. The intensity calculation (Yvon, Jeitschko \& Parthé, 1969) using the positional parameters of TiFeSi gave good agreement with the observed intensities (Table 1).

In the Guinier-de Wolff pattern of TiCoGe , on the other hand, no superstructure lines could be observed. It could be indexed with the hexagonal $\mathrm{Fe}_{2} \mathrm{P}$-type unitcell, giving least-squares refined lattice constants of $a=6.222 \pm 0.002, c=3.7267 \pm 0.0010 \AA, c / a=0.5990 \pm$ $0.0002, \bar{V}=124 \cdot 94 \pm 0.12 \AA^{\frac{1}{3}}$. In the recent literature several ternary compounds with the $\mathrm{Fe}_{2} \mathrm{P}$-type structure have been reported. Some examples are given in Table 4, which also contains the distribution of atoms on the four equipoints of the $\mathrm{Fe}_{2} \mathrm{P}$-type structure. It can be seen that the large transition metal atoms always occupy positions $3(g)$, whereas the smaller transition metal atoms were found at either the $3(f)$ sites or at the positions $2(c)$ and $1(b)$. Therefore, the atomic distribution, as suggested by the subcell of TiFeSi, was not assumed to be necessarily correct. In order to decide which of the two ordering schemes applied for TiCoGe , relative line intensities were estimated with the aid of an intensity strip and were compared with the calculated intensities for these ordering schemes. The two positional x parameters were varied systematically in these calculations. Agreement between observed and calculated intensities could be obtained only for the atomic distribution and the positional parameters given in Table 4. Thus the atomic order in TiCoGe is the same as in the borides and silicides of Table 4 and corresponds also to the subcell of TiFeSi. A listing of observed and calculated powder intensities of TiCoGe is given in Table 5 .

Discussion

A large number of phases have been ascribed the ordered $\mathrm{Fe}_{2} \mathrm{P}$-type structure in the recent literature. Kripjakevič, Markiv \& Melnyk (1967) were the first

Table 2. Atomic parameters of TiFeSi and their standard deviations

	Position	\boldsymbol{x}	$\begin{gathered} \sigma(x) \\ \left(\times 10^{4}\right) \end{gathered}$	y	$\begin{gathered} \sigma(y) \\ \left(\times 10^{4}\right) \end{gathered}$	z	$\begin{gathered} \sigma(z) \\ \left(\times 10^{4}\right) \end{gathered}$	B
Ti(1)	4(b)	$\frac{1}{4}$	-	0.2004	7	0.2964	14	$0 \cdot 5 \AA^{2}$
Ti(2)	4(b)	$\frac{1}{4}$	-	$0 \cdot 7793$	6	0.2707	14	$0 \cdot 5$
$\mathrm{Ti}(3)$	4(b)	$\frac{1}{4}$	-	0.9979	6	0.9178	15	0.5
$\mathrm{Fe}(1)$	8(c)	0.0295	7	$0 \cdot 3764$	4	0.1200*	-	$0 \cdot 5$
$\mathrm{Fe}(2)$	4(a)	0	-	0	-	$0 \cdot 2501$	12	0.5
Si(1)	8(c)	0.0060	13	$0 \cdot 1675$	9	0.9953	18	0.8
Si(2)	4(b)	$\frac{1}{4}$	-	0.9747	11	$0 \cdot 5055$	23	0.8

to report the ordering (Table 4) for the four equiatomic phases in the systems $\{\mathrm{Zr}, \mathrm{Hf}\}-\mathrm{Ni}-\{\mathrm{Al}, \mathrm{Ga}\}$. Analogous positioning of the atoms has been reported for CeNiAl (Table 4) by Dwight, Mueller, Conner, Downey \& Knott (1968), who found almost sixty more phases, all at the composition 1:1:1 in the ternary sys-

Table 3. Observed and calculated structure factors of TiFeSi

${ }^{1} \mathrm{~F}_{0} \mathrm{~F}_{\mathrm{c}}$	$\mathrm{nk} 2 \mathrm{Fo} \mathrm{F}_{\mathrm{c}}$	$\mathrm{nk} 1 \mathrm{~F}_{\mathrm{o}} \mathrm{F}_{\mathrm{c}}$	$k^{2} \mathrm{~F}_{0} \mathrm{~F}_{\mathrm{c}}$	${ }^{1} \mathrm{~F}_{0} \mathrm{~F}_{\mathrm{c}}$
$0^{-4} 06048$	11321720			
(10cccl		20 ${ }^{2}$		
(erser	45 420	((1)ccccc	
(1)		(1)	(1)	
	${ }^{1}$			(1)ccco
(1)	1 12	(1)		(100
(1)			[12064	${ }_{5} 9$
	41 46		[18 3735	
(1)	38 30		18	
	$\begin{array}{lll}32 & 26 \\ 45 \\ 4 & 43 \\ \end{array}$		[38	${ }^{7}$
	28632	${ }^{2}$, ${ }_{2}$
		(${ }_{6}^{88} 89$	22	55
(1)		${ }_{6}^{6} \times 18$	33	${ }^{56}$
(10	3940			45
(1)	24 3126	(120cce		[10
(1)		, 7818	- ${ }_{8}^{8<21}$	[3 59
(1)	[14 10	(59	${ }_{9}{ }_{9}^{24}$,
(1)	[13 33136	(1)		
	$\begin{array}{lll}21 & 20 \\ 20 & 20\end{array}$			9 1 0 46 9 3 48 0 40 48
(1)	1882	$\begin{array}{lllll} \\ 6 & 8 & 66 & 67\end{array}$	(1) ${ }^{3}$	
(1)	[15			
$4{ }_{4}^{4} 996$	211 21	922	($\begin{array}{ll} \\ 0 & <26 \\ 0 & 28 \\ 0 & 27\end{array}$
(10	29 28 28 30		(1)	
(1)	llll	llll	(108 60	3
(1)	$26 \quad 23$	(10 10	104	\%
S 51401314	8 30 27 8 22 24 12			${ }_{6}^{6}$
${ }^{93} 989$	222 23	(ersers	, 1	
	20 26 26 19 29	$0<14$ 3 0 45 0 45 0	$\begin{array}{ll}\text { 512 } \\ 517 \\ 517 & 3 \\ 517 \\ 517\end{array}$	(
(1)				
- 6180		crerr	(1)	
(6100101			13	(10 ${ }^{40} 80$
			288	
, 9788			26	(182
54	(10	1 35 1 35 1 35 3		${ }^{9} 9{ }^{4}$
1718124	$\begin{array}{ccccc}2 & 12 & 0 & 23 & 22 \\ 2 & 14 & 0 & 33 & 38 \\ 3\end{array}$	$\begin{array}{llll} \\ 3 & 8 & 2 & 26 \\ 3 & 10 & 26 \\ 3 & 56\end{array}$	${ }_{48}^{25}$	
73 715		,	99	$1{ }^{10}$
46 20 20 19	${ }_{122}^{112188}$	S	14	(11) 11
${ }_{89}^{85}$	1.126119 1109107 1		${ }_{64} 6$	111 ${ }_{11}^{11}$
${ }^{-1} 5$	21319108	${ }^{3}$	17 17	
	(20)	[10ccl	$\begin{array}{ll}24 & 29 \\ 59 \\ 59\end{array}$	
(1)0 40 42 0 26 22	(1)		40	
[120 27	(1)			
<29 19		$\begin{array}{lllll} \\ 3 & 13 & 2 & 36 & 34 \\ 3 & 15 & 2 & 38 \\ 3 & 31\end{array}$	25 30	$\begin{array}{lllll}11 & 6 \\ 11 & 8 & 1 & 30 & 30 \\ 11 & & 36 \\ 7\end{array}$
[13 3130		(120	35 39	(10
[32 38	(18lll	14	Ster ${ }^{5}$	52
${ }_{46}^{45} 42$	${ }_{40}^{117} 412$	${ }^{3} 19$	Sllll ${ }_{5}^{5}$	(11)
3645	:1125129	$\begin{array}{llll}3 & 10 & 3 & 66 \\ 3 & 12 \\ 3 & 3 \\ 37\end{array}$	(1)	
${ }_{<23}^{29} 2{ }^{29}$	${ }_{3} 1545$		(1)8	
${ }_{8}^{24}$			53	
	(1)		(ex 45	
(${ }^{7}$ 7 ${ }^{8}$			(16 180000
$\begin{array}{llll}2 & 36 & 32\end{array}$	118118	42627	, 13 O<25 14	

Table 5. Calculated and observed intensities of TiCoGe
Debye-Scherrer camera, $\mathrm{Cu} K \alpha$ radiation.
In the low-angle range, data from a Guinier-de Wolff pattern were incorporated.

$n k l$	$d_{c}(\AA)$	I_{c}	I_{0}	$n k l$	$d_{c}(\AA)$	I_{c}	I_{0}
100	5.3884	3	2	410	1.1758	11	
001	3.7267	8	8	321	1.1733	23	35
110	3.1110	19	20	312	1.1658	3	3
101	3.0651	6	6	113	1.1537	5	6
200	2.6942	3	2	203	1.1281	14	13
111	2.3882	56	50	411	1.1214	9	11
201	2.1834	100	100	402	1.0917	5	4
210	2.0366	32	30	500	1.0777	2	-
002	1.8633	29	25	213	1.0605	10	10
300	1.7961	23	20	330	1.0370	4	10
211	1.7872	39	40	501	1.0353	5	10
102	1.7610	0	0	322	1.0301	2	-
301	1.6180	4	3	303	1.0217	1	-
112	1.5985	5	4	420	1.0183	1	-
220	1.5555	8	10	331	.9990	1	-
202	1.5325	1	-	412	.9944	24	30
310	1.4945	3	4	421	.9823	13	15
221	1.4355	0	-	223	.9707	0	-
311	1.3871	7	5	510	.9678	2	2
212	1.3748	16	14	313	.9553	6	4
400	1.3471	4	3	511	.9367	22	20
302	1.2932	16	19	502	.9329	7	115
401	1.2669	0	-	004	.9317	11	
003	1.2422	0	-	104	.9181	0	-
320	1.2362	1	-	403	.9132	0	-
103	1.2105	1	-	332	.9061	26	25
222	1.1941	8	7				

tems $\{\mathrm{Y}, \mathrm{R} . \mathrm{E} ., \mathrm{Zr}, \mathrm{Hf}, \mathrm{Th}, \mathrm{U}\}-\{\mathrm{Fe}, \mathrm{Ru}, \mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}, \mathrm{Ni}$, $\mathrm{Pd}, \mathrm{Pt}, \mathrm{Cu}\}-\{\mathrm{Al}, \mathrm{Ga}, \mathrm{In}\}$. Steeb \& Petzow (1966) have reported that the phases $\mathrm{U}\{\mathrm{Co}, \mathrm{Ir}, \mathrm{Ni}\} \mathrm{Al}$ are of the $\mathrm{Fe}_{2} \mathrm{P}$-type. The assumed atomic order (U at the (P) positions, the other atoms statistically at the Fe positions), however, does not seem well substantiated. Lam, Darby, Downey \& Norton (1967) have found UFeAl to be isotypic with UCoAl and UIrAl.

The atomic order in the phases NbFeB and TaFeB (Kuz'ma, 1967), NbMnSi (Deyris, Roy-Montreuil, Fruchart \& Michel, 1968) and NbMnGe (Roy-Montreuil, Deyris, Fruchart \& Michel, 1968) is different (Table 4). At first it may seem surprising that, for example, the Ni atoms in CeNiAl and ZrNiAl do not correspond to the Fe atoms in NbFeB . There are, however, structure-chemical arguments for the support of both ordering schemes:
(a) Both nickel and boron are the elements with the smallest atomic volume in their respective compounds; they are therefore suited for the phosphorus site in $\mathrm{Fe}_{2} \mathrm{P}$, which has the lowest coordination number.

Table 4. Atomic order in $\mathrm{Fe}_{2} \mathrm{P}$-type structures (space group $P \overline{6} 2 m-D_{3 h}^{3}$)

Compound		$3(\mathrm{~g})$		$3(f)$	2(c) and 1(b)	Reference
$\mathrm{Fe}_{2} \mathrm{P}$	Fe ,	$x=0.594$	Fe ,	$x=0.256$	P	1
ZrNiAl	Zr,	$x=0 \cdot 600$	Al,	$x=0.256$	Ni	2
CeNiAl	Ce ,	$x=0.580 \pm 0.001$	Al,	$x=0.219 \pm 0.001$	Ni	3
NbFeB	Nb		Fe		B	4
NbMnSi	Nb ,	$x=0.589$	Mn ,	$x=0.242$	Si	5
TiCoGe	Ti,	$x=0.57 \pm 0.01$	Co,	$x=0.245 \pm 0.01$	Ge	6

References

1 Rundqvist \& Jellinek (1959).
2 Kripjakevič, Markiv \& Melnyk (1967).
3 Dwight, Mueller, Conner, Downey \& Knott (1968).
4 Kuz'ma (1967).
5 Deyris, Roy-Montreuil, Fruchart \& Michel (1968).
6 This work.
(b) Although aluminum is chemically related to boron, silicon and germanium, it is known to behave sometimes like a transition metal. For example, it participates in the formation of such typically inter-transitionmetal structures as the σ-phase structure (σ - $\mathrm{Nb}_{2} \mathrm{Al}$ and $\left.\sigma-\mathrm{Ta}_{2} \mathrm{Al}\right)$. This makes the correspondence of the Al atom in ZrNiAl with the Fe atom in NbFeB at least plausible.
(c) In alloys of the large transition metals of the third and fourth group of the periodic system, the elements of the eighth group do frequently occupy the boron positions in structure types, such as $\mathrm{CrB}, \mathrm{FeB}$ and AlB_{2} (for examples, see the compilation by Pearson, 1967) and thus have a coordination of nine nearest neigh-
bours which is also the case for the Ni atoms in CeNiAl and ZrNiAl .
(d) The isotypy of many borides, phosphides, silicides and germanides, on the other hand, (Aronsson, Lundström \& Rundqvist, 1965) supports the atomic order of NbFeB and TiCoGe .

The structure of TiFeSi can be derived from the ordered $\mathrm{Fe}_{2} \mathrm{P}$-structure by shifts in the atomic positions of up to $0.4 \AA$. The interatomic distances, however, are not as much affected by these shifts, since the positions of the neighbouring atoms are adjusted accordingly (Fig. 2). It must be emphasized that the weak superstructure-lines of TiFeSi and TiFeGe are barely visible on Debye-Scherrer films. It therefore seems

Fig. 2. Projections of the structures TiFeSi, TiCoGe (ordered $\mathrm{Fe}_{2} \mathrm{P}$-type), TiNiSi (ordered PbCl_{2}-type, E phase; setting Pnma) and $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$. In the projection of TiFeSi the atoms at $x=\frac{1}{4}$ and $x=\frac{3}{4}$ are connected by thin lines; atoms at $x \simeq 1$ (connected by thick lines) and $x \simeq \frac{1}{2}$ are superimposed. In the structures of $\mathrm{TiCoGe}, \mathrm{TiNiSi}$, and $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$ atoms connected with thick and thin lines ar eseparated by $\frac{1}{2}$ translation period in the projection direction. Small open circles: Ti, Nb; solid circles: Fe, Co, Ni, Cu; large open circles: Si, Ge
possible that some of the ternary phases, reported to be isotypic with $\mathrm{Fe}_{2} \mathrm{P}$, actually crystallize with the TiFeSi structure. The Guinier-de Wolff pattern of a sample of ZrNiAl (prepared in the same way as TiFeSi), however, contained only lines of the small $\mathrm{Fe}_{2} \mathrm{P}$-type unit-cell, in agreement with the results reported by Kripjakevič et al. (1967).

The interatomic distances in TiFeSi (Table 6) show a regularity which has also been observed for the structure of $\mathrm{Zr}_{4} \mathrm{Co}_{4} \mathrm{Ge}_{7}$ (Jeitschko, 1969): all distances tran-sition-metal-silicon (germanium) are shorter than the corresponding sum of the coordination number 12 radii, whereas all distances transition-metal-transitionmetal are longer (with the exception of two $\mathrm{Ti}-\mathrm{Fe}$ dis-

Table 6. Interatomic distances $D(\AA)$ and coordination numbers (CN) in the structure of TiFeSi
The values are compared with the sum of the atomic radii for CN 12. All distances shorter than $3.9 \AA$ are listed. The values given for CN are the numbers of neighbors within $1 \cdot 15\left(r_{A}+r_{B}\right)$ and (in brackets) the number of additional neighbors within $1 \cdot 30\left(r_{A}+r_{B}\right)$.

tances which are only slightly shorter). A comparison of the interatomic distances in TiNiSi (Shoemaker \& Shoemaker, 1965) and $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$ (Ganglberger, 1968) shows the same regularity.
The coordination polyhedra for the corresponding atoms in these structures (Fig. 2) are very similar. Each large transition-metal atom (excepting the fifth Nb in $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$) has 15 nearest neighbors: 10 transitionmetal atoms and 5 silicon or germanium atoms. These tightly bound silicon or germanium atoms form a more or less regular quadratic pyramid in each of these structures. The small transition-metal atom has 12 neighbors: 8 atoms at the corner of a quadrangular prism and 4 more atoms outside the prism side faces. The four tightly bound $\mathrm{Si}(\mathrm{Ge})$ atoms of this polyhedron form a tetrahedron in the structures of TiFeSi , TiCoGe and TiNiSi. In $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$ one of these four Si neighbours is replaced by a Cu atom at a larger distance. Finally, the environment of the silicon (germanium) atoms is the same in all these compounds: nine transition-metal atoms at a rather short distance, with 6 atoms at the corners of a trigonal prism and 3 atoms outside the rectangular faces of the prism.

The structures of TiFeSi and TiCoGe on the one hand and TiNiSi on the other hand are even more related. The main difference in nearest neighbour environment in these structures arises through the nonequivalence of the $\mathrm{Si}(\mathrm{Ge})$ atoms in $\mathrm{TiFeSi}(\mathrm{TiCoGe})$: the one $\mathrm{Si}(\mathrm{Ge})$ atom in equipoint $8(c)[2(c)]$ has 6 Ti and $3 \mathrm{Fe}(\mathrm{Co})$ atoms and the other in equipoint $4(b)$ $[1(b)]$ has 3 Ti and $6 \mathrm{Fe}(\mathrm{Co})$ atoms as nearest neighbors. On the average each $\mathrm{Si}(\mathrm{Ge})$ atom has five large and four small transition-metal neighbors as is also the case for the silicon atom in TiFeSi.

The close resemblance of the nearest neighbor environments in these phases is an indication of the stability of these polyhedra. The contraction in the tran-sition-metal-silicon (germanium) distances suggests a strong bond between these elements. The bonding between the transition-metal atoms seems to be of less importance, as is indicated by the stretching of the corresponding distances.

The author wishes to thank Professor P. A. Beck for the stimulating interest he had in this work. Thanks are also due to Mr A. J. Klein for the preparation of the samples. This work was supported by grants from the Army Research Office, Durham, and the National Science Foundation.

References

Aronsson, B., Lundström, T. \& RundQvist, S. (1965). Borides, Silicides and Phosphides. London: Methuen.
Buerger, M. J. (1960). Crystal-structure Analysis. New York: John Wiley.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Deyris, B., Roy-Montreuil, J., Fruchart, R. \& Michel, A. (1968). Bull. Soc. chim. Fr. 1968, 1303.

Dwight, A. E., Mueller, M. H., Conner, R. A. Jr, Downey, J. W. \& Knott, H. (1968). Trans. Amer. Inst. Min. (Metall.) Engrs. 242, 2075.
Freundlich, W. \& Mochai, N. F. (1966). C. R. Acad. Sci. Paris, C262, 1000.
GANGLBERGER, E. (1968). Mh. Chem. 99, 549.
International Tables for X-ray Crystallography (1962). Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
Jeitschko, W. (1968). Acta Cryst. B24, 930.
Jeitschio, W. (1969). Acta Cryst. B25, 557.
Jeitschko, W., Jordan, A. G. \& Beck, P. A. (1969). Trans. Amer. Inst. Min. (Metall.) Engrs. 243, 335.
Kripjakevic, P. I., Markiv, V. Ja. \& Melnyk, Ja. V. (1967). Dopov. Akad. Nauk. Ukr. RSR, A29, 750.

Kuz'ma, Yu. B. (1967). Dopov. Akad. Nauk Ukr. RSR, A29, 939.
Lam, D. J., Darby, J. B. Jr, Downey, J. W. \& Norton, L. J. (1967). J. Nucl. Mat. 22, 22.

Markiv, V. Ja., Gladyševskij, E. I., Skolozdra, R. V. \& Kripjakevic, P. I. (1967). Dopov. Akad. Nauk Ukr. RSR, A29, 266.
Pearson, W. B. (1967). Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2. New York: Pergamon Press.
Roy-Montreuil, J., Deyris, B., Fruchart, R. \& Michel, A. (1968). C. R. Acad. Sci. Paris, C266, 615.

Rundquist, S. \& Jellinek, F. (1959). Acta Chem. Scand. 13, 425.
Shoemaker, C. B. \& Shoemaker, D. P. (1965). Acta Cryst. 18, 900.
Spiegel, F. X. (1963). M.S. Thesis, University of Illinois.
Spiegel, F. X., Bardos, D. \& Beck, P. A. (1963). Trans. Amer. Inst. Min. (Metall.) Engrs. 227, 575.
Steeb, S. \& Petzow, G. (1966). Trans. Amer. Inst. Min. (Metall.) Engrs. 236, 1756.
Yvon, K., Jeitschio, W. \& Parthí, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Report of the Laboratory for Research on the Structure of Matter, Univ. of Pennsylvania, Philadelphia, Pa.

[^0]: * Present address: Central Research Department, Experimental Station, E.I. du Pont de Nemours \& Co, Wilmington, Del. 19898, U.S.A.

[^1]: *It is not known whether crushing the brittle samples produced additional twinning by deformation.

